MASONRY URBANUS
MASONRY DETAILS FOR LOW-RISE URBAN HOUSING

Window Head Details

Option One
- Joint reinforcing @ 16" o.c.
- Flashing
- Cotton weep
- Drip edge
- Bond beam

Option Two
- Flashing with end dams
- Joint reinforcing @ 16" o.c.
- Steel lintels
- Cotton weep
- Drip edge

Comments

These two window head details show the relationship between the steel lintel, drip edge, flashing, end dams, and weep holes. The first option shows the use of a concrete masonry bond beam. In option two, the bond beam is omitted and the steel is grouted solid and reinforced. The second detail shows two back to back steel lintels used for spanning the opening.

NOTE: ALL EXTERIOR CONCRETE MASONRY SHOULD INCORPORATE INTEGRAL WATER REPELLENT IN THE UNITS & MORTAR

Composite Wall - Base Flashing

Option One
- Flashing support angle
- Stepped through wall flashing
- Continuous collar joint
- Cotton sash weep @ 16" O.C.
- Drip Edge

Option Two
- Stepped flashing back to back create the above window span.
- Stepped flashing turned up on the inside, and folded to form an end dam protects the head condition from moisture. The sill detail also uses flash-
- ing, end dams and weep holes to keep moisture out of the wall. The use
- of a precast concrete or stone sill is highly suggested over using brick
- front faces of these structures is composed of brick directly mortared
- or parged to an inner wythe of cmu. The collar joint between the two wythes should be 100% solid as it is the only defense against water penetration. Details covered

Composite Wall - Windows

Option One
- Flashing End Dam
- Cotton sash weep
- Stepped flashing
- Drip Edge
- Steel Lintel

Option Two
- Continuous collar joint
- Flashing end dam
- Cotton sash weep
- Sloped sill
- Through wall flashing
- Drip edge
- Gnarled solid

Comments

Here, loose steel lintels back-to-back create the above window span. The use of a composite wall consists of an exterior wythe of brick directly mortared or parged to an inner wythe of cmu. The collar joint between the two wythes should be 100% solid as it is the only defense against water penetration. Details covered

NOTE: ALL EXTERIOR CONCRETE MASONRY SHOULD INCORPORATE INTEGRAL WATER REPELLENT IN THE UNITS & MORTAR

Scope of this guide

The current trend of urban renewal and infill has sparked a high volume of new low rise residence buildings. These structures come in many forms, but quite often they employ the use of load bearing concrete masonry walls supporting a wood floor system. These new buildings are largely derivative of the old load bearing masonry “brownstone” or “three flat” structures of old. This guide is intended to assist contractors and architects to give this old building type a modern approach to detailing.

Floor system connections

When designing low - rise load bearing structures, the connection detail between the floor system and the wall system is critical for achieving a watertight structure. There are several ways to connect a wood floor system to a masonry load-bearing wall. Much of this guide will deal with which strategy should be utilized. Connection methods covered are:

- Joist Hangers
- Beam Pockets
- Ledger Beams

Brick and block composite wall details

Quite often, the front facade of these structures is composed of brick directly mortared to the building a more residential, more human scale. The preferred way to construct a brick and block wall is to separate the two wythes with an airspace, creating a cavity wall. Due to economic constraints, we see most designs using the composite wall design. The composite wall consists of an exterior wythe of brick directly mortared or parged to an inner wythe of cmu. The collar joint between the two wythes should be 100% solid as it is the only defense against water penetration. Details covered for this system are:

- Base Flashing
- Window Head
- Window Sill

Commentary on exterior concrete masonry

All exterior concrete masonry should be treated with an integral water repellent (both units and mortar additive), or a penetrant water repellent should be applied to the finished wall. Because 4” concrete masonry vaneer will shrink over time, a 4” hot-dipped galvanized ladder type joint reinforcing should always be placed in bed joints spaced 16 inches vertically. Type S mortar may be used for all veneer construction. Type S mortar may be required for some through wall load bearing applications. Type S mortar tends to be less workable in the field and should only be specified when dictated by structural requirements. Sills, coping and chimney caps should project beyond the face of the wall at least 1 inch and should have functional flashing and weep holes. In addition, all sills, coping and chimney caps should have a minimum slope of 1:4, be mechanically anchored to the wall, and should have proper sized, sealed, and located movement joints when necessary.

Flashing should be installed at locations shown on plans and in strict accordance with the details and industry standard flashing procedures. Functional, unpunctured flashing and weep holes are to be used at the face of wall above grade, above eaves, at shelf angles, lintels, wall-roof intersections, chimneys, bay windows, and below sills and coping. The flashing should be extended past the face of the wall. The flashing should have end dams at discontinuous ends, and properly sealed splices at laps.

FOR MORE INFO AND CAD DETAILS VISIT WWW.MACONLINE.ORG/URBANUS

Introduction

Masonry Advisory Council
1480 Renaissance Drive Suite 401
Park Ridge, Il 60068
847-297-6704
http://www.maconline.org
Masonry Urbanus

Masonry Details for Low-Rise Urban Housing

Beam Pocket Details

The traditional beam pocket detail still can be effective, stepped flashing above the bearing line is critical to the performance of this system. Without the flashing, any water present in the wall has a clear path inside the building and has the potential to deteriorate the floor structure.

NOTE: ALL EXTERIOR CONCRETE MASONRY SHOULD INCORPORATE INTEGRAL WATER REPELLENT IN THE UNITS & MORTAR

Ledger Beam Details

The use of a ledger beam which is bolted to a bond beam is also a good option for this bearing condition. Through wall flashing is still required to maintain a watertight wall. Any water that penetrates the block will run down the inner cores of the block until it hits the flashing. The flashing and weep holes will allow the water to exit without damaging the structure.

NOTE: ALL EXTERIOR CONCRETE MASONRY SHOULD INCORPORATE INTEGRAL WATER REPELLENT IN THE UNITS & MORTAR

Parapet & Window Sill

Below are details for a parapet condition and a window sill condition. The parapet is reinforced with #4 bars at 40 inches on center for resistance to wind loads. If a metal cap is used, it should extend down the face of the wall at least 3 inches with continuous sealant at the joint on both sides of the wall.

The sill detail shows the arrangement of flashing, end dam, weep holes and drip edge and how they all work together to form a watertight window sill.

NOTE: ALL EXTERIOR CONCRETE MASONRY SHOULD INCORPORATE INTEGRAL WATER REPELLENT IN THE UNITS & MORTAR